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Abstract

In this paper an analytic method is used to solve for the cross spectral density of the interior acoustic
response of a cylinder with nonuniform thickness subjected to turbulent boundary layer excitation. The cylinder
is of honeycomb core construction with the thickness of the core material expressed as a cosine series in the
circumferential direction. The coe�cients of this series are used as the design variable in the optimization study.
The objective function is the space and frequency averaged acoustic response. Results con�rm the presence of
multiple local minima as previously reported and demonstrate the potential for modest noise reduction.

Introduction

Aircraft interior noise levels have been an ongoing concern to airline operators and aircraft manufacturers for
many years. The concerns have primarily been those of speech interference, crew fatigue, and passenger comfort,
the latter arising primarily in private/business aircraft and �rst class accommodations. Though there are currently
no regulations on interior noise levels, airline operators have required guarantees from manufacturers on these
levels. Some primary sources of interior noise that are currently being studied due to their strong interaction with
aircraft structures are propeller, jet, boundary layer, and turbine noise, the latter being a primarily structure
borne noise associated with rotor imbalances. Both propeller and turbine noise are primarily tonal in nature and
have been the object of several recent structural acoustic optimization investigations.

Cunefare et. al. [1,2] have been working to develop the tools and methodology for performing structural-
acoustic optimization with acoustic objectives and constraints using commercial �nite and boundary element
software. Most of their structures were typical ring frame and stringer sti�ened shells and fuselages subjected to
either propeller or engine excitation. They demonstrated the ability to obtain modest amounts of noise reductions
in many of the structures they studied with little or no weight penalty. Another observation from their work was
that the acoustic objective function had many local minima and thus all of their results were reported as ranges.
The level of noise reduction obtained in all their investigations varied widely depending on the initial design state.
One of their �rst reported results was for a thin aluminum monocoque shell and of particular interest to this
investigation. In this study the shell was divided circumferentially into eighteen strips. The thicknesses of the
shell within each of these areas became the design variables in the optimization study. For this idealized structure
subjected to narrow band propeller noise interior noise reductions of 17 to 24 dB were obtained. Though this
type of structural tailoring is impractical on thin isotropic material, the results were very good.

The use of honeycomb core materials in commercial aircraft o�er some signi�cant advantages over aluminum,
however, several disadvantages are also evident. An all-composite honeycomb core structure tends to have inher-
ently lighter damping than its aluminum counterpart. The result of this is a potential for higher noise levels in
the aircraft interiors. Several investigations whose objective was to improve the structural acoustic performance
of honeycomb core structures have since been reported. Tang et. al. [3,4], in a classical parametric study, showed
that `very' thick honeycomb structures had a more favorable high frequency transmission loss characteristic than
either metallic, composite, or `thin' honeycomb structures. This appeared to be a phenomenon related to the ratio
of the membrane and bending wave speeds. The prospect of using the ability to tailor this form of construction to
reduce the low frequency interior noise levels of aircraft cabins has been investigated by Fernholz and Robinson
[5,6]. They used the lamination angles of the inner and outer face sheets of the honeycomb side walls of an
aircraft fuselage as design variables. Results demonstrated that a modest two to three dB of noise reduction was
obtainable for interior noise generated by structural excitation.

The present investigation will explore both the potential for interior noise reduction and the nature of
the design space in thick honeycomb shells subjected to turbulent boundary layer (TBL) excitation where the
honeycomb core thickness is the design variable. Speci�cally, an analytic solution for the interior noise of a thick
honeycomb core shell will be obtained for the case when the shell core thickness is expanded in a cosine series as

Hcore(�) = hc + hc F (�) = hc + hc

nmaxX
i=1

di Cos(i �) (1)
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where hc is the nominal core thickness and di are the non-dimensional design variables. The objective function
used in this study is similar to that used by Cunefare et. al. [1,2]. It is the space and frequency averaged spectral
density function of the acoustic pressure. In the remainder of this paper the solutions for the shell and acoustic
responses will be discussed followed by the formal statement of the constrained optimization problem. Results
from two optimization experiments will then be presented and discussed with respect to the nature of the design
space and the potential for noise reduction.

Solution to Shell Response

The basic geometry of the shell initially indicated that a simple Donnell-Mustari or possibly Love or �rst
order shear theory would be su�cient. In these shell theories terms of the order shell thickness over shell radius
are assumed small with respect to unity and the shell equations are greatly simpli�ed. Though this ratio for
the baseline shell used in this study was nearly �fty to one, a convergence study using natural frequency as the
criterion indicated a general thick shell theory with at least �rst order shear deformation theory was required. The
reason for this is the nature of the shell construction. The shell is constructed of a honeycomb core with face sheet.
The core requires the inclusion of shear deformation theory and due to the overall construction it is permissible
for the bending sti�ness to be of the order of the membrane sti�ness. This precluded the simpli�cations made in
many shell theories.

The necessary shell response required to predict the interior noise when the shell is subjected to turbulent
boundary layer noise is the cross spectral density of the shell displacements. If the shell displacements are assumed
as a series of admissible functions, this cross spectral density function is reduced to the cross spectral density of
the unknown coe�cients of these functions. The cross spectral density matrix is determined from the equation

Saa(!) = H�1(!) Spp(!) H�t(!) (2)

were Saa is the standard notation for the matrix of cross spectral density functions of the vector of unknown a,
H�1(!) and H�t(!) are the inverse and inverse transpose of the frequency response functions for a, and Spp(!)
is given by
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Z L

0

Z 2�

0

Z L

0

Z 2�

0

	(�1; x1) e
�� !

Uc
jx1�x2j e��

!
Uc

Rj�1��2j ei
!
Uc

(x1�x2) �(!)	(�2; x1) R
2d�2 dx1d�1 dx2

(3)
where the cylinder coordinates are x and �, and L and 2�R are the length and circumference of the cylinder.
Equation 3 is recognized as the expansion of Corcos' cross spectral density model [7] of the turbulent boundary
layer pressure in terms of the admissible shell displacement functions, 	. The coe�cients of the exponential decay
terms, � and �, are :11 and :77 respectively. These are the same values as used by Tang [4]. The convection
velocity of the TBL, Uc, is taken as 65% of the free stream velocity. This is taken as Mach :7. The responses in
this investigation are normalized with respect to the autospectrum of the TBL loading, �(!), which is assumed
to be constant over the frequency ranges used in this investigation.

The frequency response functions for the vector of unknowns, a, can be derived from the second variation of
the functional

R
vol

(T � U ) dv where T is kinetic energy and U is the strain energy of the shell. The strain-
displacement relationships used in this investigation are for a thick shear deformable shell [8], the discussion of
which is precluded for brevity. The kinetic energy and the strain energy are formed in the usual manner by
substituting the displacement functions into the inertia and strain expressions. The U , V , and W displacements
in terms of the admissible shape functions and their coe�cients are

U (x; r; �; t) =
1X

m=0

Cos
�m � x

 L

�" 1X
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ei!t (4a)
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where ucnm, usnm, vcnm, vsnm, wc
nm, ws

nm,  cnm,  snm, �cnm, and, �snm are the unknowns which comprise the vector
of unknowns, a. The shapes satisfy the classic shear diaphragm boundary conditions and for uniform cylinders
permit an exact solution. The superscripts c and s denote the exact cosine theta and sine theta solutions and the
subscripts n and m denote the wave number in the circumferential and longitudinal directions respectively.

The integration of the functional is carried out in a layer by layer manner since the cylinder is of laminated
construction. The variable thickness of the cylinder wall, �gure 1, is introduced in the limits of the integration
in z which is the shell coordinate normal to the mid-surface of the shell de�ned by the midsurface of the shell,
r = R. This integration takes the form
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where the function F (�) is given in equation 1, the incremental volume, dv, is R
�
1 + z

R

�
dz d� dx, and hf is

the thickness of the face sheets. The integrations in z yield terms of �rst, second, third, fourth, and log order in
F (�). To facilitate the analytic evaluation of the integrals in theta the logarithmic terms are approximated to
fourth order in F (�). As previously stated, now that the integrals have been evaluated, the matrix of frequency
response functions is determined from the second variation of the functional. A viscous damping term is added
to the frequency response function matrix and the cross spectral density matrix of the response is solved using
equation 2.

Acoustic Solution

The acoustic response inside the cylinder is governed by the damped wave equation. The wave equation can
be written

@2

@t2
P (r; �; x; t) + C2

o (1 + i �a) 52 P (r; �; x; t) = 0 (6)

were Co is the speed of sound inside the cylinder and �a is, by structural analogy, representative of the damping
in the 
uid. The solution for equation (6) is well known. For the case of a �nite length cylinder with rigid ends
the pressure is given by

P (x; r; �; t) =
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were � is given by � =
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where �a is the density of air and the dot indicates velocity. Since the displacement, W , is a sine series in x and
the pressure is a cosine series the boundary condition is enforced using a cosine series expansion of W (x; r; �; t).
Ultimately the cross spectral density of the coe�cients of the acoustic pressure can be expressed as a complex
transformation of the coe�cients of the out-of-plane shell response. This is

Snmpp = Y ln
nm SlnaaZ

ln
nm (9)

were Y is the transpose of Z which is in general not square. The index n is the number of terms in the
circumferential sine and cosine series in equations (4c) and (7) for the displacement and pressure respectively.
The indices l and m are the number of terms in the longitudinal series expansions for the displacement and
pressure respectively. These are generally not equal. The auto-spectra of the interior pressure can then be
integrated over the volume of the cylinder and in frequency to form the objective function.
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Optimization Problem

The objective of the optimization is to minimize the space averaged mean square interior sound pressure
level in the cylinder normalized with respect to the baseline or uniform cylinder. The sole necessary constraint
is that the core thickness be greater than or equal to zero everywhere. The objective is the noise reduction in
decibels and is

Obj(di) = 10 Log10

 Z R

0

Z L

0

Z 2�

0

Z fmax

fmin

Spp( r; �; x; ! )

So
R d� dx dr d!

!
(10)

where Spp(r; �; x; !) is the spectral density of the interior acoustic response and the normalization constant, So is
chosen such that when di = 0 the objective is zero.

This objective function has historically been used for this type of study. This form o�ers the advantage
of directly yielding the desired measure, noise reduction, but interjects several questionable points. Quite often
the integrations are carried out numerically or by sampling and this leads to the inevitable convergence studies.
This is a necessity in that in purely numerical solutions the time required and thus the actual feasibility of doing
the optimization problems is directly proportional to the number of response locations. The presence of the log
function in this formulation has two principal e�ects. The �rst is that the objective is zero when the design
variables are zero. The second is that it tends to smooth the design space. This eases the gradients of the
objective and broadens the minima. Both of these can add iterations to the minimization routines.

The physical interpretation of the only necessary constraint is that the core thickness, H(�; di), be greater
than or equal to zero. Since this is a continuous function of � this inequality provides some di�culty in that there
are several mathematical means of enforcing this. One of the most straightforward is to require the sum of the
absolute value of the design variables to be less than unity. This is

nvarX
i=1

j di j � 1 (11)

where nvar is the number of design variables and di are the design variables. This form of the constraint is,
however, nonlinear and has discontinuity of slopes. A more verbose form of the necessary constraint but one
that yields linear constraint equations is to construct the 2nvar set of equations of all possible combinations of
the variables and require them to be less than or equal to one. This simply expands the absolute value signs in
equation (11) with all possible outcomes. A constraint screening method can then be employed in the optimization
algorithm to omit inactive constraints.

Results

The results presented are for a cylinder of length twenty feet with a mean diameter of eight feet. The cylinder
wall is constructed of aluminum honeycomb core with aluminum face sheets. The core has a mean thickness of
one inch and a density of 0.001 lbs per inch cubed. The face sheets are each 0.02 inches thick. The interior space
is assumed to be a standard atmosphere with the speed of sound of 1135 feet per second. Both the structural
and acoustic regimes are assumed viscously damped to 5 percent of critical damping. The convection velocity of
boundary layer noise is taken as sixty �ve percent of the free stream velocity which is Mach 0.7 . The remaining
parameters of Corcos' boundary layer cross spectral density model are the same as in reference 4. The auto-
spectrum of the turbulent boundary layer pressure is assumed constant over the frequency bands in these studies
and is thus factored out of the objective function.

The allowable core thickness variation for these investigations was truncated to

Hcore(di) = Ho (1 + d3Cos(3�) + d4Cos(4�) + d5Cos(5�) + d6Cos(6�)) (12)

where the design space is four dimensional and continuous in " = fd3 d4 d5 d6g and bounded by jd3j+ jd4j+ jd5j+
jd6j � 1. The Cos(�) and Cos(2�) terms were omitted from the thickness variation as preliminary results showed
them to be of little value and the constant term was also omitted as this would change the cylinders weight. The
optimization routine used was that provided for constrained minimization with the Matlab optimization tool box.
For further details on this the reader is referred to reference 9.
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The �rst step in presenting and discussing the results is to take a brief look at the baseline structure. Figures
2 and 3 do this. A graphical representation of the natural frequencies and mode numbers is shown in �gure
2. This �gure is symmetric indicating the presence of multiple resonances associated with the orthogonal sine
and cosine solutions of the displacements in the circumferential direction. The choice of design variable in this
investigation coupled the terms in the cosine expansion of the solutions and coupled terms in the sine expansion of
the solution but do not couple the sine and cosine expansions themselves. This preserved the orthogonality of the
P c and P s modal pressure responses and will be seen to limit the potential gains. The space averaged normalized
acoustic response is shown in �gure 3 for frequencies up to 1.4 kHz. From these two �gures two frequency ranges
were chosen in which to try and reduce the average noise levels. The �rst range from 125 Hertz to 175 Hertz is
discussed in numerical experiment 1 while the second range from 240 Hertz to 290 Hertz is discussed in numerical
experiment 2.

Numerical Experiment 1

The �rst numerical experiment was carried out over a frequency range from 125 Hertz to 175 Hertz. For
the baseline structure the acoustic response in this range was dominated by a single large peak. The peak
encompasses six resonant responses, two each at 152 , 154 and 155 Hertz. These have mode numbers (2,2), (1,5),
and (3,4), respectively, where the �rst number in the bracket is the longitudinal order, m, and the second is the
circumferential, n. The �rst optimization run was started with initial guess, di = f0:2 0:2 0:4 0:1g, were i = 3; 4; 5;
and 6. This is a feasible point away from the boundary of the design space. The optimizer converged to a point
on the boundary of the design space. This point was di = f0:0 1:0 0:0 0:0g. The overall noise reduction achieved
was 5.9 dB. The before and after spectra of the average interior noise level is plotted in �gure 4 over the frequency
range of the objective. It is easily seen that the dominant peak has been broken into three peaks with magnitudes
over ten dB lower than the original. As a �rst step in examining the characteristics of the new design a graph of
the natural frequencies of this cylinder is shown in �gure 5. By comparing this with the uniform cylinder several
observations can be made but �rst a brief discussion regarding required change in nomenclature. In the uniform
cylinder a mode with a circumferential variation of four is comprised solely of a sine or cosine four theta term
this is in general not true for a nonuniform cylinder. Thus the term fourth circumferential refers to a shape that
is dominated by the four theta sine or cosine term. A mode whose dominant term is a cosine will possibly be
comprised of any number of cosine terms but will not contain any sine terms. The same is true for a mode whose
predominant shape is a sine term. This is due to the choice of the terms used in the expansion of the thickness.
Thickness variations of solely sine or cosines do not couple displacement shapes of di�ering type. ie; sine or cosine
theta.

The �rst observation regarding the changes in the natural frequencies of the optimized shell, �gure 5., is the
general sti�ening of the cylinder. Most modes have higher resonant frequencies. It is further noted that the ring
frequency has not changed. This is reasonable since the mean thickness of the shell is also unchanged. It is also
observed that even and odd numbered circumferential modes behave di�erently. Odd numbered circumferential
sine and cosine modes have the same resonant frequencies while even numbered circumferential sine and cosine
modes do not. That is, �gure 5 is symmetric about zero for odd n and unsymmetric for even n. The changes
that are most signi�cant to the noise reduction obtained is the changes in the second and fourth modes. Both
sine and cosine terms in these modes are signi�cantly lower in frequency. The fourth circumferential sine mode
frequency is, however, much lower than its corresponding cosine mode. This selective shifting and separation of
the resonances is the principal mechanism by which the noise level in this frequency band was reduced. A plot of
a subset of the design space for the objective in this experiments was also made. The space is of Obj(0; 0; d5; d6)
with both d5 and d6 bounded. This space is shown in �gure 6. There is little, however, that can be said regarding
the overall space since the dominant design variable was d4 but it is notable that the space is continuous and
smooth and, as noted by other investigators, has local minima.

Numerical Experiment 2

As stated previously the frequency range of interest for this experiment was 240 Hertz to 290 Hertz. This
range is just above the ring frequency of the uniform cylinder and is dominated by two spectral peaks. As
before each peak is comprised of several resonances. Without going into great detail it is easily seen from �gure
2 that there are many resonances in this range. The optimization routine was started with an initial guess of
di = f0:1 � 0:2 0:2 � 0:1g and converged to a �nal state of di = f0:0362 0:0089 0:0012 � 0:5514g with a noise
reduction of .59 dB. A �rst observation is that this is a nearly insigni�cant change in the interior environment
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however it is worthy of analysis to better understand the algorithms and physics of the problem. The before
and after spectra of the objective show several interesting points. These spectra are shown in �gure 7 and it is
immediately seen that the �rst peak in the baseline spectrum has been completely removed by the optimization
from the �nal spectrum. The second spectral peak, however, has increased in height. Though the overall noise
level has decreased the optimized cylinder noise spectrum is potentially worse for crew fatigue and comfort. As
these values for di looked rather arbitrary and were not near a boundary it was decided to restart the optimization
from a nearby point closer to the constraint boundary. This point was di = f0:0362 0:0089 0:0012 � 0:8g. The
optimization routine failed to advance from this point. The value of the objective indicated an overall noise
reduction of .43 dB. This seems to indicate the presence of a large shallow and probably local minima in the
design space. The plot of a subspace of the design space for this objective tends to con�rm this assertion. This
plot is of the subspace of the design space de�ned by Obj(0; d4; 0; d6) subject to the bounds jd4j � 0:5 and
jd6j � 0:5 and is shown in �gure 8. The objective varies by no more than half a dB over this domain. This
sub-domain also appears to have local minima.

Discussion

The structural and acoustic responses of a thick aluminum honeycomb core shell with aluminum face sheets
and variable thickness core subjected to turbulent boundary layer noise were predicted by analytical methods.
The core thickness variation was expressed as a four term cosine series in the circumferential direction. The
series coe�cients were used as design variable in two optimization studies. The objective in these studies was
to minimize the volume and frequency averaged interior noise. The two investigations were carried out over two
di�erent frequency ranges using a commercially available optimization package. The basic �nding of this work
was that the interior noise levels could be reduced by this process su�ciently to warrant further study. The study
also demonstrated the presence of multiple local minima in the design space and the detrimental nature of the
typically used logarithmic objective function.
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Figure 1. Geometry of variable thickness cylinder.
Cylinder cross section view.
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Figure 2. Graphical representation of the natural fre-
quencies of uniform thickness cylinder. Positive
values of n are the cosine � modes and negative
n are the sine � modes.
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Figure 3. Space averaged interior noise spectrum for
uniform thickness cylinder.
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Figure 4. Before and After Space averaged interior
noise spectrum for frequency range of objective
in experiment 1.
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Figure 5. Graphical representation of the natural fre-
quencies of optimized cylinder in experiment 1.
Thickness variation is H(�) = ho [1 +Cos(4 �)]
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Figure 6. Subset of the design space for objective used
in experiment 1.

7



240 250 260 270 280 290
−59

−58

−57

−56

−55

−54

−53

−52

−51

−50

frequency (Hz)

N
oi

se
 L

ev
el

 (
dB

)

Baseline 
Optimized

Figure 7. Before and After Space averaged interior
noise spectrum for frequency range of objective
in experiment 2.

−0.5

0

0.5

−0.5

0

0.5
−1

−0.5

0

0.5

O
bj

. (
dB

)

d6 

d4 

Design Space, Obj(d4,d6) 

Figure 8. Subset of the design space for objective used
in experiment 2.

8


